诊断准确性试验设计
配对设计中两种方法的灵敏度(或特异度)比较
要求:所有受试者均进行待检验的检查(A和B)以及金标准检查
补充:计算出最终样本量后,可将受试者随机分为两组,一组行A-B顺序,一组行B-A顺序
示例1:
Nomura, Tamaki, Tanaka, et al (2006) conducted a study to evaluate the utility of various salivary enzyme tests for screening of periodontitis. Amongst the biochemical markers, salivary lactate dehydrogenase (LDH), with a cut at 371 IU/L, appeared the best and free haemoglobin (f‐HB), with a cut at 0.5 IU/L, the worst, with sensitivities 0.66 and 0.27, respectively. If it were possible to make both diagnostic tests in each individual, then a paired design could be used for determining sample size. Using paired design with 2‐sided α = 0.05, power 80% and prevalence=0.3, it will require 87 participants (26 with disease, 61 without disease).
$\alpha$=0.05(双侧),$power$=0.8
灵敏度,$P_{senA}$=0.66,$P_{senB}$=0.27,$Prev$=0.3。
$\alpha$=0.05(双侧),$power$=0.8
灵敏度,$P_{senA}$=0.66,$P_{senB}$=0.27,$Prev$=0.3。
参数说明:
- $\alpha$,一类错误,检验水准,结果为假阳性的概率。α越小,即检验水准要求越高,正态分布对应的Z值越大,样本量要求越大。
- $\alpha$,有单双侧之分,双侧检验只关注是否存在差异,单侧检验既考虑是否存在差异,还关注差异的方向。两者的计算公式不同,可在计算器页面选择“单侧”或“双侧”进行切换。双侧$\alpha$=0.05,等价于单侧$\alpha$=0.025,对应的Z值均为1.96。 $$双侧检验的备择假设:P_{senA}\neq{P_{senB}}$$ $$单侧检验的备择假设:P_{senA}>{P_{senB}}或者P_{senA}<{P_{senB}}$$
- $1-\beta$,检验效应,等于1-II类错误($\beta$),表示当存在差异时,假设检验能得到阳性结果的概率。一般要求检验效能在0.8以上,否则会出现非真实的阴性结果。
- 选择的指标,灵敏度:采用金标准诊断为“患病”的人群中,诊断性试验诊断为阳性例数的比例,也称为真阳性率。特异度:采用金标准诊断为“未患病”的人群中,诊断性试验诊断为阴性例数的比例,也称为真阴性率。
- $P_{senA}$,估计的组A的灵敏度,可通过文献查阅,或通过预实验数据计算,点击跳转。
- $P_{senB}$,估计的组B的灵敏度,可通过文献查阅,或通过预实验数据计算,点击跳转。
- $P_{speA}$,估计的组A的特异度,可通过文献查阅,或通过预实验数据计算,点击跳转。
- $P_{speB}$,估计的组B的特异度,可通过文献查阅,或通过预实验数据计算,点击跳转。
- $Prev$, 灵敏度的计算仅涉及患者人群,而诊断试验需要同时纳入患病人群(计算灵敏度)和未患病人群(计算特异度)。该参数是设置诊断试验受试者中的患病率 ,不是一般人群中的疾病患病率。如0.5,表示试验将纳入一半的患者和一半的非患者。
- 页面计算码:样本量计算花费开发者(黄桥)大量时间进行整理和网页开发,请关注作者个人公众号,发送“计算码”获取最新码。
计算公式(需输入计算码):
1、依据灵敏度计算病人数或依据特异度计算非病人数
双侧检验:
$$n=\frac{[Z_{1-\alpha/2}*\Lambda+Z_{1-\beta}*\sqrt{\Lambda^2-\zeta^2*(3+\Lambda)/4}]^2}{\Lambda*\zeta^2}$$ $$\Lambda=(1-P_A)*P_B+(1-P_B)*P_A$$ $$\zeta=(1-P_A)*P_B-(1-P_B)*P_A$$单侧检验:
$$n=\frac{[Z_{1-\alpha}*\Lambda+Z_{1-\beta}*\sqrt{\Lambda^2-\zeta^2*(3+\Lambda)/4}]^2}{\Lambda*\zeta^2}$$ $$\Lambda=(1-P_A)*P_B+(1-P_B)*P_A$$ $$\zeta=(1-P_A)*P_B-(1-P_B)*P_A$$其中,$P_A$是A组的灵敏度(或特异度),$P_B$是B组的灵敏度(或特异度)
2、依据病人数或非病人数计算总人数:
若比较灵敏度,则总人数
$$N_{subject}=\frac{n}{Prev}$$若比较特异度,则总人数
$$N_{subject}=\frac{n}{1-Prev}$$